Skip to contents

Create a baseline table

Usage

create_baseline(
  data,
  ...,
  by.var,
  add.p = FALSE,
  add.overall = FALSE,
  theme = c("jama", "lancet", "nejm", "qjecon"),
  detail_level = c("minimal", "extended")
)

Arguments

data

data

...

passed as fun.arg to baseline_table()

by.var

specify stratification variable

add.p

add comparison/p-value

add.overall

add overall column

theme

set table theme

detail_level

specify detail level. Either "minimal" or "extended".

Value

gtsummary table list object

Examples

mtcars |> create_baseline(by.var = "gear", add.p = "yes" == "yes")
Characteristic 3
N = 15
4
N = 12
5
N = 5
p-value1
mpg, Median (IQR) 15.5 (14.3 – 18.7) 22.8 (21.0 – 28.9) 19.7 (15.8 – 26.0) <0.001
cyl, n (%)


<0.001
    4 1 (6.7) 8 (67) 2 (40)
    6 2 (13) 4 (33) 1 (20)
    8 12 (80) 0 (0) 2 (40)
disp, Median (IQR) 318 (276 – 400) 131 (79 – 160) 145 (120 – 301) <0.001
hp, Median (IQR) 180 (150 – 215) 94 (66 – 110) 175 (113 – 264) <0.001
drat, Median (IQR) 3.08 (3.00 – 3.21) 3.92 (3.90 – 4.10) 3.77 (3.62 – 4.22) <0.001
wt, Median (IQR) 3.73 (3.44 – 4.07) 2.70 (2.07 – 3.17) 2.77 (2.14 – 3.17) <0.001
qsec, Median (IQR) 17.42 (17.02 – 18.00) 18.76 (18.41 – 19.69) 15.50 (14.60 – 16.70) 0.002
vs, n (%) 3 (20) 10 (83) 1 (20) 0.001
am, n (%) 0 (0) 8 (67) 5 (100) <0.001
carb, n (%)


0.24
    1 3 (20) 4 (33) 0 (0)
    2 4 (27) 4 (33) 2 (40)
    3 3 (20) 0 (0) 0 (0)
    4 5 (33) 4 (33) 1 (20)
    6 0 (0) 0 (0) 1 (20)
    8 0 (0) 0 (0) 1 (20)
1 Kruskal-Wallis rank sum test; Fisher’s exact test
mtcars |> create_baseline(by.var = "gear", detail_level = "extended")
Characteristic 3
N = 15
4
N = 12
5
N = 5
mpg


    Median (Q1, Q3) 15.5 (14.3, 18.7) 22.8 (21.0, 28.9) 19.7 (15.8, 26.0)
    Mean (SD) 16.1 (3.4) 24.5 (5.3) 21.4 (6.7)
    Min, Max 10.4, 21.5 17.8, 33.9 15.0, 30.4
cyl, n (%)


    4 1 (6.7) 8 (67) 2 (40)
    6 2 (13) 4 (33) 1 (20)
    8 12 (80) 0 (0) 2 (40)
disp


    Median (Q1, Q3) 318 (276, 400) 131 (79, 160) 145 (120, 301)
    Mean (SD) 326 (95) 123 (39) 202 (115)
    Min, Max 120, 472 71, 168 95, 351
hp


    Median (Q1, Q3) 180 (150, 215) 94 (66, 110) 175 (113, 264)
    Mean (SD) 176 (48) 90 (26) 196 (103)
    Min, Max 97, 245 52, 123 91, 335
drat


    Median (Q1, Q3) 3.08 (3.00, 3.21) 3.92 (3.90, 4.10) 3.77 (3.62, 4.22)
    Mean (SD) 3.13 (0.27) 4.04 (0.31) 3.92 (0.39)
    Min, Max 2.76, 3.73 3.69, 4.93 3.54, 4.43
wt


    Median (Q1, Q3) 3.73 (3.44, 4.07) 2.70 (2.07, 3.17) 2.77 (2.14, 3.17)
    Mean (SD) 3.89 (0.83) 2.62 (0.63) 2.63 (0.82)
    Min, Max 2.47, 5.42 1.62, 3.44 1.51, 3.57
qsec


    Median (Q1, Q3) 17.42 (17.02, 18.00) 18.76 (18.41, 19.69) 15.50 (14.60, 16.70)
    Mean (SD) 17.69 (1.35) 18.97 (1.61) 15.64 (1.13)
    Min, Max 15.41, 20.22 16.46, 22.90 14.50, 16.90
vs, n (%)


    0 12 (80) 2 (17) 4 (80)
    1 3 (20) 10 (83) 1 (20)
am, n (%)


    0 15 (100) 4 (33) 0 (0)
    1 0 (0) 8 (67) 5 (100)
carb, n (%)


    1 3 (20) 4 (33) 0 (0)
    2 4 (27) 4 (33) 2 (40)
    3 3 (20) 0 (0) 0 (0)
    4 5 (33) 4 (33) 1 (20)
    6 0 (0) 0 (0) 1 (20)
    8 0 (0) 0 (0) 1 (20)
mtcars |> create_baseline(by.var = "gear", detail_level = "extended",type = list(gtsummary::all_dichotomous() ~ "categorical"),theme="nejm")
Characteristic 3
N = 15
1
4
N = 12
1
5
N = 5
1
mpg 15.5 (14.3 – 18.7) 22.8 (21.0 – 28.9) 19.7 (15.8 – 26.0)
cyl


    4 1 (6.7) 8 (67) 2 (40)
    6 2 (13) 4 (33) 1 (20)
    8 12 (80) 0 (0) 2 (40)
disp 318 (276 – 400) 131 (79 – 160) 145 (120 – 301)
hp 180 (150 – 215) 94 (66 – 110) 175 (113 – 264)
drat 3.08 (3.00 – 3.21) 3.92 (3.90 – 4.10) 3.77 (3.62 – 4.22)
wt 3.73 (3.44 – 4.07) 2.70 (2.07 – 3.17) 2.77 (2.14 – 3.17)
qsec 17.42 (17.02 – 18.00) 18.76 (18.41 – 19.69) 15.50 (14.60 – 16.70)
vs


    0 12 (80) 2 (17) 4 (80)
    1 3 (20) 10 (83) 1 (20)
am


    0 15 (100) 4 (33) 0 (0)
    1 0 (0) 8 (67) 5 (100)
carb


    1 3 (20) 4 (33) 0 (0)
    2 4 (27) 4 (33) 2 (40)
    3 3 (20) 0 (0) 0 (0)
    4 5 (33) 4 (33) 1 (20)
    6 0 (0) 0 (0) 1 (20)
    8 0 (0) 0 (0) 1 (20)
1 Median (IQR); n (%)
create_baseline(default_parsing(mtcars), by.var = "am", add.p = FALSE, add.overall = FALSE, theme = "lancet")
Characteristic FALSE
N = 19
1
TRUE
N = 13
1
mpg 17·3 (14·7 – 19·2) 22·8 (21·0 – 30·4)
cyl

    4 3 (16%) 8 (62%)
    6 4 (21%) 3 (23%)
    8 12 (63%) 2 (15%)
disp 276 (168 – 360) 120 (79 – 160)
hp 175 (110 – 205) 109 (66 – 113)
drat 3·15 (3·07 – 3·70) 4·08 (3·85 – 4·22)
wt 3·52 (3·44 – 3·85) 2·32 (1·94 – 2·78)
qsec 17·82 (17·05 – 19·44) 17·02 (16·46 – 18·61)
vs 7 (37%) 7 (54%)
gear

    3 15 (79%) 0 (0%)
    4 4 (21%) 8 (62%)
    5 0 (0%) 5 (38%)
carb

    1 3 (16%) 4 (31%)
    2 6 (32%) 4 (31%)
    3 3 (16%) 0 (0%)
    4 7 (37%) 3 (23%)
    6 0 (0%) 1 (7·7%)
    8 0 (0%) 1 (7·7%)
1 Median (IQR); n (%)